Effective management of passive layers using composite cathodes in solid state magnesium batteries.
نویسندگان
چکیده
A simple and effective method for the management of the passive layer in solid state batteries is reported. The success is achieved using a composite cathode with embedded channels of polyaniline allowing smooth charge transfer across the passive layer. The composite cathode manifested better performance in terms of the cell characteristics and shelf life.
منابع مشابه
High power rechargeable magnesium/iodine battery chemistry
Rechargeable magnesium batteries have attracted considerable attention because of their potential high energy density and low cost. However, their development has been severely hindered because of the lack of appropriate cathode materials. Here we report a rechargeable magnesium/iodine battery, in which the soluble iodine reacts with Mg2+ to form a soluble intermediate and then an insoluble fin...
متن کاملVanadium Pentoxide-Based Composite Synthesized Using Microwave Water Plasma for Cathode Material in Rechargeable Magnesium Batteries
Multivalent cation rechargeable batteries are expected to perform well as high-capacity storage devices. Rechargeable magnesium batteries have an advantage in terms of resource utilization and safety. Here, we report on sulfur-doped vanadium pentoxide (S-V₂O₅) as a potential material for the cathodes of such a battery; S-V₂O₅ showed a specific capacity of 300 mAh·g-1. S-V₂O₅ was prepared by a m...
متن کاملTwo-Dimensional Titanium Carbide MXene As a Cathode Material for Hybrid Magnesium/Lithium-Ion Batteries.
As an alternative to pure lithium-ion, Li+, systems, a hybrid magnesium, Mg2+, and Li+ battery can potentially combine the high capacity, high voltage, and fast Li+ intercalation of Li-ion battery cathodes and the high capacity, low cost, and dendrite-free Mg metal anodes. Herein, we report on the use of two-dimensional titanium carbide, Ti3C2Tx (MXene), as a cathode in hybrid Mg2+/Li+ batterie...
متن کاملHigh-Performance All-Solid-State Lithium–Sulfur Batteries Enabled by Amorphous Sulfur-Coated Reduced Graphene Oxide Cathodes
DOI: 10.1002/aenm.201602923 suffer from safety problems arising from lithium anode and fast capacity fading due to the insulating nature of sulfur, the dissolution-induced polysulfide shuttle reaction, and large volume changes.[4–6] To address these issues, carbonaceous material[7,8] and conducting polymers[9] have been used to trap the high-order polysulfides in the cathodes; protective layers...
متن کاملInterface Stability in Solid-State Batteries
Development of high conductivity solid-state electrolytes for lithium ion batteries has proceeded rapidly in recent years, but incorporating these new materials into highperforming batteries has proven difficult. Interfacial resistance is now the limiting factor in many systems, but the exact mechanisms of this resistance have not been fully explained in part because experimental evaluation of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 41 شماره
صفحات -
تاریخ انتشار 2013